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Abstract

Purpose – The purpose of this paper is to outline more computational schemes which provide a low
computational cost approach to analyze flow characteristics through tube bundles. Flow through tube
bundles has been numerically simulated by means of an alternative approach so as to assess flow
behavior and its characteristics.
Design/methodology/approach – A Cartesian-staggered grid based finite-volume solver has been
implemented. Furthermore, the ghost-cell method in conjunction with Great-Source-Term technique
has been employed in order to directly enforce no-slip condition on the tubes boundaries. Before
giving a solution for flow field through tube bundles, the accuracy of the solver is validated by
simulation of flow in the cavity and also over a single circular cylinder. The results are completely
compatible with the experiments reported in the literature.
Findings – Eventually, the flow through two types of tube bundles in in-line square and general
staggered arrangements in Re ¼ 100 are simulated and analyzed. For these tube bundles that are
being studied, the maximum drag and lift coefficients and maximum gap velocities have been
numerically obtained. The same simulations have been also performed for the cases where the tube
bundles are confined by two lateral walls.
Practical implications – These configurations are frequently used in heat exchangers, steam
boilers, nuclear reactors, and many mechanical structures.
Originality/value – The adapted method is firstly implemented to simulate flow through tube
bundles and the analyzed simulations have not previously been presented by other researches.
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1. Introduction
Solution of flow field through tube bundles for recognition of flow behavior is a matter
of great importance in designing heat exchangers, nuclear reactors, and many
industrial types of equipment. Tube bundles are known as very complex geometries for
numerical investigations. The conventional structured-grid and new unstructured-grid
approaches for simulating flow through tube bundles or other complex geometries are
boundary-fitted. In these methods great simplicity of the enforcement of boundary
conditions will be achieved. But transformation of the governing equations to the mesh
coordinate system results in complexity of these methods (Ye et al., 1999). Cartesian
grid method does not have these problems but the governing equations are discretized
on a grid which does not conform to the boundaries of the bluff bodies. The Cartesian
grid method greatly simplifies the grid generation and also retains the relative
simplicity of the governing equations. In addition, this method also has a significant
advantage over the conventional boundary-fitted approach in simulating flows with
moving boundaries (Shyy et al., 1996; Ye et al., 1999). Consequently, Cartesian grid
methods have been used extensively for Euler flows (Almgren et al., 1997; Pember et al.,
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1995; Quirk, 1994; Bayyuk et al., 1993) whereas applications to viscous flows were rare
(Shyy et al., 1996; Udaykumar et al., 1996, 1997; Ye et al., 1999).

Ye et al. (1999) proposed a method based on the Cartesian grid for simulating two-
dimensional unsteady, viscous, incompressible flows over complex geometries. In this
method, a control volume near the immersed boundary is re-formed into a body-fitted
trapezoidal shape by discarding the solid part of the cell and adding the neighboring
cells. This will lead to the different discretization for the reshaped cells yet add to the
difficulty of the method. This method has been called ‘‘cut-cell’’ and is applicable in
finite-volume method. They have simulated flow past a random array of 95 cylinders
in Re ¼ 24 in order to show the ability of the method in simulation of complex
geometries. Another method that is developed for enforcement of boundary conditions
on immersed boundaries in finite-volume method and Cartesian grid is called ‘‘ghost-
cell’’ which is easier than the cut-cell method (Tseng and Ferziger, 2003). It should be
pointed out that this method will not lead to a different discretization.

Cartesian grid based methods are also implemented to solve flow fields through
tube bundles using penalization method. The penalization method was proposed for
viscous flows by penalizing the momentum equations. Its main idea is to model solid
obstacles as porous media with porosity, and viscous permeability approaching zero.
Liu and Vasilyev (2007) have used penalization technique to simulate compressible
flows through porous media based on a physically sound mathematical model. The
penalization method is also used by other researchers (Kevlahan and Wadsley, 2005;
Schneider and Farge, 2005) to solve the flow field and simulate the transient flow
behavior in tube bundles as very complex geometries.

As it can be seen in reviewed papers, with regards to this fact that tube bundles are
a kind of complex geometries, different numerical approaches could be chosen for
simulation of flow through them. Furthermore, it should be mentioned that, generally,
numerical simulations of flow through tube bundles with the goal of flow behavior
analysis are scarcely done (Zdravistch et al., 1995; Schroder and Gelbe, 1999; Sweeney
and Meskell, 2003; Longatte et al., 2003; Schneider and Farge, 2005), vs wide
experimental researches which provides comprehensive data base for analysis many
related phenomena with fluid-structure interactions.

Zdravistch et al. (1995) have numerically predicted laminar and turbulent fluid flow
and heat transfer around staggered and in-line tube banks using a cell-centered finite-
volume algorithm. Their results were included streamlines, pressure coefficient
distributions, temperature contours, local Nusselt number distributions, and average
convective heat transfer coefficients and they have found that a relatively fine grid is
required to be able to predict the surface heat transfer behavior accurately.

Schroder and Gelbe (1999) and Longatte et al. (2003) have carried out some
investigations on the numerical identification of fluid-elastic effects affecting tube
bundle motion in cross-flows. Longatte’s methodology was based on an arbitrary
Lagrange Euler (ALE) formulation for the fluid computation and Schroder and Gelbe
used STAR-CD software to analyze fluid-elastic instability in array of cylinders.

Sweeney and Meskell (2003) used a technique based on a discrete vortex method
similar to the cloud-in-cell approach which has been applied to flow problems for small
numbers of cylinders. Their numerical simulation was carried out for the unsteady
flow through a rigid normal triangular tube array with a pitch-to diameter of 1.6. They
determined both the frequency of vortex shedding and the instantaneous flow
structure in the Reynolds number of 2,200.
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Schneider and Farge (2005), studied the time evolution of several flows in arrays of
cylinders, squares, and double-cruciform shaped tubes at a Reynolds number of 200
and pitch ratio of P/D ¼ 2. Their numerical scheme is either based on adaptive wavelet
or Fourier pseudo-spectral space discretization with adaptive time stepping. A volume
penalization method has been used to impose no-slip boundary conditions on the tubes.

As it is evident, numerical studies on tube bundles are not extensively done and
it seems necessary to outline more computational schemes which provide a low
computational cost approach to analyze flow characteristics through tube bundles.

In this article, we have employed the finite-volume method and the ghost-cell
technique to solve flow field through tube bundles with circular cylinders. Spatial
discretization is based on a hybrid scheme on Cartesian-staggered grid while temporal
discretization is in conformity with fully implicit practice. We also used a ghost-cell
technique to enforce the no-slip condition on the embedded boundaries. The numerical
procedure is based on the semi-implicit method for pressure-linked equations
(SIMPLE) algorithm (Patankar and Spalding, 1972) in order to improve the
convergence rate. A Great-Source-Term technique is employed for irregularity
recognition and setting the flow field values on arbitrary grid point, instead of adding
feedback-forcing to the Navier-stocks equations. A proper procedure is used to select
the ghost-cells and then applying no-slip condition on the true physical boundary by
a linear interpolation. Also, the process to enforce no-slip conditions on boundaries is
simpler than such enforcements on typical cut-cell or penalization methods.

Regarding the adapted method, the flow field through two types of rigid tube
bundles in in-line square and general staggered arrangements has been solved and
analyzed in both unconfined and confined by lateral walls situations. Before solving
the flow field through tube bundles, the accuracy of the solver is validated by
simulation of flow in the cavity and also over a single circular cylinder.

The following section of the present article, therefore, outlines the governing
equations, boundary conditions, and numerical formulation of the problem. Cavity flow
simulation and validation of its results is presented in section 3 in order to ensure the
accuracy of the method in such cases where there are no embedded boundaries in the
domain. Section 4 describes the algorithm of selecting the ghost-cells and enforcement of
no-slip condition on the true surface of embedded boundaries. This section also validates
the approach for flow over a single circular cylinder and evaluates the accuracy in various
Reynolds numbers by comparing the results with other experimental and numerical
studies. In section 5, the results of flow field solution through tube bundles with circular
cylinders is illustrated and analyzed. Finally, conclusions are drawn in section 6.

2. Problem formulation and numerical modeling
2.1 Governing equations
The governing equations on a two-dimensional, viscous, unsteady, and laminar flow
field are continuity and momentum equations (Navier-Stocks equations), as:

@�

@t
þ divð� u

!Þ ¼ 0; ð1Þ

@

@t
ð�uÞ þ divð� u

!
uÞ ¼ divð� grad uÞ � @P

@x
þ �x; ð2Þ

@

@t
ð�vÞ þ divð� u

!
vÞ ¼ divð� grad vÞ � @P

@y
þ �y; ð3Þ
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where � is the fluid density, � the fluid viscosity, u
!

the velocity vector of flow field, P
the pressure, and u and v are the velocity components in x and y directions, respectively.
�x and �y are also body forces per unit volume.

In the present work, fluid has been assumed to be incompressible; therefore fluid
density has been automatically retained as constant by the solver. In the performed
numerical simulations there were no free surface in the numerical domain and the body
forces has been consequently neglected ð�x � 0; �y � 0Þ.

2.2 Boundary conditions
Boundary conditions should be enforced on the inlet, the outlet, and the boundaries
of the computational domain and also on interior region and surfaces of embedded
boundaries. Dirichlet boundary condition has been generally used on the boundaries of
the computational domain except for the outlet where a Neumann boundary condition
has been employed. The boundary conditions in the inlet of the flow consist of u ¼ U
and v ¼ 0, where U is the free-stream velocity. Neumann boundary conditions at the
outlet of computational domain include:

@P

@x
¼ 0;

@u

@x
¼ 0 and

@v

@x
¼ 0:

Enforcement of no-slip condition on the embedded boundaries is the main difficulty of
the method which is described in sections 4.1 and 4.2. The values of the flow field
variables have been arranged to be the solution at the embedded boundaries grid
points by Great-Source-Term technique described in section 2.5.

2.3 Grid generation
We have used fixed Cartesian-staggered grid with non-uniform grid spacing. The grids
in the region of the embedded boundaries are sufficiently finer in order to achieve
reasonable accuracy. The velocity components are calculated for the points lying on the
faces of the control volumes in the staggered grid and pressure is calculated for the
main scalar grid points.

2.4 Discretization of governing equations
The governing equations have been discretized using the finite-volume method. The
temporal discretization has been done in conformity with the fully implicit practice.
For the spatial discretization, Hybrid scheme has been employed. Discretized equations
including momentum equations, pressure and velocity correction equations are
described in detail by Patankar (1980) and we avoid reiterating their presentation here.
But it must be pointed out that the function AðjPjÞ would appear in algebraic
discretized equations where P is the Peclet number and function A can be selected in
relation to the spatial discretization scheme. With regard to the Hybrid scheme of this
article, the cited function is selected, for which:

AðjPjÞ ¼ ½½0; 1� 0:5jPj��; ð4Þ

The function [[,]] will select the maximum argument. SC and SP will also appear
in discretized equations which are the components of linearized source term
ðS ¼ Sc þ Sp�pÞ. In addition, pressure gradient is included in this source term. �p is
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the independent variable evaluated in the pole point of grid and can stand for velocity
components in momentum equations, or pressure correction in the continuity equation.

2.5 Method of irregularity recognition
Our computer program is written for Cartesian grid but can be improvized to perform
an irregularly shaped calculation domain. This is done by rendering inactive cells or
‘‘blocking-off’’ some of the control volumes of the regular grid so that the remaining
active control volumes form the desired irregular domain. The blocking-off operation
consists of establishing known values of the relevant �’s in the inactive control
volumes, which in the present work is performed by implementing Great-Source-Term
techniques.

In this manner, any desired value of � (e.g. interpolated values for u and v on the
boundary the bluff bodies) can be arranged to be the solution at an internal grid point
by setting SC and SP as follows:

SC ¼ 1030�P;desired ð5Þ

SP ¼ �1030 ð6Þ

where 1030 denotes a number large enough to make the other terms in the discretization
equation negligible. Consequently,

SC þ SP�P � 0:0) �P ¼ �
SC

SP

¼ � 1030�P;desired

�1030
¼ �P;desired ð7Þ

2.6 Numerical solution algorithm
We used the SIMPLE procedure for calculation of the flow field. The SIMPLE
algorithm (Patankar and Spalding, 1972) is based on a cyclic series of guess-and-
correct operations to solve the discretized governing equations. First, the velocity
components are computed using the momentum equations and a guessed pressure
distribution. Then, the mass residual (b) is calculated and the pressure and velocity
components are corrected in order to satisfy the continuity equation ðb � 0:0Þ.

2.7 Convergence criterion
Residuals are the main factors for setting the convergence criterion in the solver. The
residuals consist of the sum of mass source (b) and the sum of residual source within
the calculation domain for continuity and momentum equations in x and y directions,
respectively. The value of these mentioned residual sources must be lower than the
adjusted convergence criterion in order to stop the iterations in every time step. The
value of convergence criterion has been safely set at 10�6 in the present work. It implies
that all three residual sources must have values smaller than the convergence criterion.

3. The cavity flow
In order to validate the developed solver before adding any embedded boundary and
in the case of fitted grids on the boundaries of computational domain, numerical
simulations on the cavity flow have been preliminarily performed. The cavity flow is a
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conventional problem in computational fluid dynamics with wide implementation in
validation of numerical models. There are many analytical and numerical investigative
data. In addition, the boundary condition of this flow is easy to apply. The
computational domain of the problem is figured in Figure 1. D is the length of each side
of the cavity and U is the flow velocity at the upper side. Based on these scales of the
problem, the Reynolds number is defined as Re ¼ �UD=�.

Simulations have been done on two different Reynolds numbers of 100 and 400. In
these Reynolds numbers the flow regime in the cavity is laminar and steady. The cavity
is filled with incompressible fluid with � ¼ 1000 and � ¼ 0:001002. The length scale of
the cavity and velocity of upper side have been set at D ¼ 1 and U ¼ 0:0001002 to
achieve Reynolds number of 100. For Reynolds number equal to 400, U ¼ 0:0004008
has been adjusted.

The boundary conditions of lateral and bottom sides include zero values of velocity
components ðu ¼ 0; v ¼ 0Þ and the boundary conditions of upper side are u ¼ U and
v ¼ 0. Simulations performed on a uniform grid with 200 by 200 grid cells. And also
the solver has been run in the steady state situation by setting the time step to a great
value ð�t ¼ 1030Þ and the convergence criterion have been set at 10�6.

Figure 2 shows the u- and v-velocity profiles in a section of the cavity which
x ¼ D=2 and y ¼ D=2, respectively. These velocity profiles for two Reynolds numbers,
Re ¼ 100 and 400, are compared with Ghia et al. (1982). The results from the present
work are shown in solid and dashed lines and the data points in symbols stand for
Ghia’s results. As it is evident the results are in good agreement.

For more comparison, the calculated streamlines of the flow field in the cavity,
are compared with the numerical results of Hou and Zou (1995) which are shown in
Figure 3. The streamlines are quite consistent in both Re ¼ 100 and 400. In general,
three vortices are formed in these Reynolds numbers; two smaller vortices in the bottom
corners and one big vortex in the center of the cavity. The vortices in the corners of the
cavity in Re ¼ 400 are larger than the case of Re ¼ 100. The ability to locate the center
of the vortices has been also observed. When Re ¼ 100, the current method estimates the
center of the large vortex at (0.621, 0.742) compared to (0.6196, 0.7373) found with the Hou
and Zou method. When Re ¼ 400, the current method estimates the center of the large
vortex at (0.572, 0.613) in comparison to (0.5608, 0.6078) from Hou and Zou.

It can be concluded that the numerical formulation and algorithms are correctly
implemented and we can use them to solve more complicated flow fields.

Figure 1.
Computational domain of

the cavity flow problem
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4. Flow around a single circular cylinder
With regard to the target of the present article to simulate fluid flow in tube bundles
with circular cross sections, the validation of the solver for the flow around a circular
cylinder is a matter of great importance. There are also many numerical simulations to
compare with our results.

Figure 2.
Comparison of velocity
profiles along a line cut
through the center of the
cavity at Re ¼ 100
and 400



Simulation of
flow through
tube bundles

1045

In the present simulation, a rectangular domain was used to simulate the flow around a
stationary circular cylinder; see Figure 4. The domain had a length of 40D and a width
of 20D, where D is the cylinder diameter. These dimensions were chosen in order to
safely minimize the boundary effects on the flow development. Cylinder was placed
inside the domain so that its center had coordinates x ¼ 10D and y ¼ 10D. The

Figure 3.
Comparisons of

streamlines obtained in
the present work (in grey),

and those from Hou and
Zou (1995) (in black)
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boundary conditions were imposed in a way that the fluid flowed from left toward right
into the downstream of the domain. A Neumann boundary condition was used on the
lateral boundaries and uniform velocity profile U was specified at the domain entrance.

In order to compare the results, various parameters have been used as follows:

Reynolds number: Re ¼ �UD

�
; ð8Þ

Drag coefficient: CD ¼
FD

0:5�U 2D
; ð9Þ

Lift coefficient: CL ¼
FL

0:5�U 2D
; ð10Þ

Pressure coefficient: Cp ¼
P

0:5�U 2
; ð11Þ

Strouhal number: St ¼ fD

U
; ð12Þ

Dimensionless time: T ¼ tU

D
; ð13Þ

where FD and FL are the drag and lift forces (including pressure and friction drags and
lifts), respectively, P the pressure, f the vortex shedding frequency (if vortex shedding
exists) and t is the time.

In the whole state of the numerical simulation of the flow around circular cylinders
the flow assumed incompressible with � ¼1,000 and � ¼ 0:001002. Cylinder diameter
has been also taken as D ¼ 0:04. Simulations have been performed in Re ¼ 10, 20, 40,
80, 100, 150, and 300; to achieve the cited Reynolds numbers the free-stream velocities
have been taken as U ¼ 0.0002505, 0.000501, 0.001002, 0.002004, 0.002505, 0.0037575,
and 0.007515, respectively. The reason for the selection of these Reynolds number is
to check a wide range of laminar flow regimes and also make comprehensive
comparisons with other numerical simulations. This can help us find out the accurate
range of the function of the solver.

Figure 4.
Computational domain of
the flow around a circular
cylinder problem
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The flow around a circular cylinder has evidently been the case with the embedded
boundary. It must be reminded that in this case, some difficulties arise due to existing
curved boundaries on Cartesian grids where the grid points are not coincided on the
true surface of them. So before presenting the solution of above mentioned simulations,
it is necessary to describe ghost-cells selection procedure and indication of the flow
field values for these cells in order to satisfy the no-slip condition on the true surface of
embedded boundaries. Cited procedures are described in next subsections (4.1 and 4.2).
Investigation of grid-independency and validation of flow around a circular cylinder
have been also done in sections 4.3 and 4.4, respectively.

4.1 Selection of cut- and ghost-cells
Since boundaries of circular cylinders have curvatures, the grid points of Cartesian
grid both in staggered and scalar grid do not fit on the boundaries. Therefore
enforcement of no-slip condition has some difficulties. If the embedded boundary had
rectangular shape, this problem would not exist. The goal is to remedy the problem
with minimum computational cost.

As it was previously mentioned, a solution is the cut-cell technique which will lead
to different discretization for boundary cells and high computational expenses
and complexity (Ye et al., 1999). Another applicable technique in finite-volume solvers
is the ghost-cell. In this technique, ghost-cell is a cell that has been cut by physical
boundaries of obstacles and location of its flow field values (e.g. velocity components or
pressure) lies in the interior region of the boundary. The cells which lie in the exterior
region of the boundary are fluid cells. We must calculate the values of ghost-cells with
the aid of interpolation and use of the exterior points in order to satisfy no-slip
condition on the true surface of bluff body (Tseng and Ferziger, 2003).

Before the interpolation, the ghost-cells must be indicated. Regarding to the use of
staggered grid in this work, location of velocity components and pressure is different
for a cell where this point should be seriously considered. Firstly, the cells which are cut
by the boundary are selected, as illustrated in Figure 5. Distance of four corners of all
the grid cells from the center of cylinder location is calculated to select these cells. The
cell is exterior if all these four distances are larger than cylinder diameter, the cell is
interior if all these four distances are smaller than cylinder diameter, and finally cut-
cells are selected if some distances are larger and others are smaller than the cylinder
diameter. In Figure 5, the cut-cells are shown in gray and interior cells are hatched for
main grid (not staggered). If the location of flow field values rest into the boundary (G1,
G2, and G3 points) the cell is ghost and their value will be calculated by interpolation. If
the location of flow field values rest out of the boundary (F1, F2, and F3 points) there is
no need for any interpolation and its value will be calculated by solution of the flow field.

The abovementioned procedure is loyal for u and v staggered grids and has been
identically repeated. Finally in Figure 5, locations of u and v which needs interpolation
are shown by solid arrows and locations where values are calculated in the flow field are
shown by hollow arrows. Interpolation procedure of ghost values is described as follows.

4.2 Enforcement of the no-slip condition
Setting to zero the values of velocity components for selected boundary cells in
previous section (both ghost-cells and flow cells near boundary) is the simplest way
to enforce no-slip condition. This practice will lead to correct solution when grid is
infinitely refined. Thus, this method is really impossible due to the limited
computational aspects. We did this practice with practical grid size (not infinite) where
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the method has yielded the jagged pressure distribution. The goal of ghost-cell
technique is to prevent this jagged pressure distribution.

We used linear interpolation scheme proposed by Tseng and Ferziger (2003) in order
to perform the ghost-cell method. They have shown that assumption of linear variation
of the flow field values near the boundary have approximately the same accuracy with
quadratic variation assumption. If � stands for flow field variables (pressure and
velocity components), then its variation near the boundary is as follows:

� ¼ aþ bxþ cy; ð14Þ

where a, b, and c are the constant coefficients and x and y are the coordinates of � ’s
calculation place. Three points with known flow values are needed for calculation of
constant coefficients and finally � in the ghost-cell ð�GÞ. Two of the points mentioned
and used in this work are as follows:

(1) A point on the real surface of cylinder that will be obtained from the cross point
of cylinder boundary and a line between cylinder center and the ghost point
location. Value of this point is the very boundary condition (e.g. � ¼ 0:0 in the
case of stationary cylinder).

Figure 5.
Cells that are cut by
cylinder boundary and
calculation location of
flow field values for
main grid
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(2) Two exterior points (F points) which are the nearest to the real boundary. Value
of � in these two points are obtained from the flow field in previous iteration of
SIMPLE algorithm.

It should be pointed out that in the staggered-grid, the constant coefficients of equation
14 are quiet different for pressure and velocity components due to the different places
of calculation of the pressure and velocity components. Here, Great-Source-Term
technique is employed to set the interpolated values as the solution of ghost-cells.

4.3 Investigation of grid-independency
Four grid types with various sizes are studied in order to investigate grid-independency
of results. Grid-independency is proved in this section and shown that the results are not
sensitive to the grid size. The results of the study are shown in Table I. In this table,
pressure drag coefficient, fraction drag coefficient, total drag and angle of separation in
the flow around a single circular cylinder in Re ¼ 40 are summarized for four grid sizes.
Grid sizes include: fine grid A, standard grid B, coarse grid C, and coarser grid D. In all
grid types, grids are finer in the region of cylinder in a manner that 20 through ten cells
lying along the cylinder diameter in fine grid through coarser grid, respectively; ND in
Table I represents the number of cells lying within the cylinder.

It must be mentioned that the simulation is done in unsteady condition with time
step �t ¼ 10�3. The simulation is continued to get stationary condition, regarding the
steady flow behavior in Reynolds 40.

As it is observed from Table I, results are fully independent from grid sizes. For
example, total drag coefficient for simulation type D is equal 1.436 while in simulation
type A is equal 1.52 that has reasonable 5.5 percent difference. Also, our study has shown
that the results have no significant difference for grids finer than grid type A. Hereinafter,
all presented results were obtained by grid type A with 200� 200 cells (Figure 6).

Re ¼ 40
Simulation Ncells ND Domain CD;p CD;s CD

A fine grid 180 � 200 20 [20D � 40D] 1.010 0.510 1.520
B standard 140 � 160 16 [20D � 40D] 0.998 0.509 1.507
C coarse grid 100 � 120 12 [20D � 40D] 0.975 0.497 1.472
D coarser grid 80 � 100 10 [20D � 40D] 0.967 0.469 1.436

Table I.
Pressure, fraction, and
total drag coefficients

obtained in grid-
independency

investigation for
simulation A-D in

flow around a
circular cylinder

Figure 6.
View of the mesh

for flow around a circular
cylinder problem
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4.4 Verification and analysis of the results
Results of the flow around single circular cylinders are verified and analyzed in this
section using defined dimensionless parameters (equations 9-13). Figure 7
demonstrates the pressure distribution for Reynolds numbers of 40 and 100. Good
agreement exists between present work and other studies.

Our simulations generally show that for Reynolds numbers equal to 10, 20, and 40, the
flow field is fully symmetric and steady. Twin vortices are formed behind the cylinder that
they are stationary. The vortices’ length increases with the Reynolds number. In Reynolds
numbers of 10, 20, and 40 the symmetry of the pressure field with respect to the x-axis
explains the absence of lift due to these flows. Therefore, Lift coefficient is zero for these

Figure 7.
Pressure distribution
obtained by the present
work in comparison with
some experimental and
numerical results in the
literature
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Reynolds numbers. For Reynolds number 80 and above, Von karman street is formed
behind the cylinder and flow field is unsteady and asymmetric. Thus, lift and drag
coefficients oscillate due to the oscillation of separation point location. Moreover, the drag
coefficient oscillates at twice the frequency of the lift coefficient.

In order to show variation patterns of drag coefficient, we have graphed the drag
coefficient as a function of the dimensionless time for different values of the Reynolds
number in Figure 8. Similar graphs are drawn by Lima E Silva et al. (2003) and our
purpose was the comparison of our work with their results. In the mentioned reference
case, an immersed boundary method based on finite differences has been developed.

Figure 8.
Drag coefficients vs the

dimensionless time
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Their Cartesian grid was uniformly generated with the size of 250� 500. Grid point’s
number along the diameter was 17 while in present work grid size is 200� 200 with 20
cells along the diameter. Total number of their mesh is 1,25,000 and total number of our
mesh is 40,000 which is one-third of their mesh size. Drag coefficients drawn in Figure 8
are in good agreement with the same graphs presented by Lima E Silva et al. (2003).
Only there is some differences in Re ¼ 300 due to the three-dimensionality in this
Reynolds number. As it can be observed in Figure 8, the amplitude and frequency of
the drag coefficients increase as the Reynolds number increases. For Re ¼ 10, 20, and
40, the drag coefficients are high at the beginning and asymptotically decay to 2.73,
1.99, 1.52, and 1.4, respectively, as shown in Figure 8(a).

Maximum amplitude of lift coefficients in Re ¼ 80, 100, 150, and 300 are also
calculated as 0.2, 0.29, 0.4, and 0.48, respectively. In these Reynolds numbers the
frequency of oscillating lift is similar to the vortex shedding frequency. Strouhal number
for these Reynolds numbers are 0.152, 0.163, 0.179, and 0.198, respectively, which for 80,
100, and 150 are in excellent agreement with literature (e.g. Williamson, 1996 and Roshko,
1955) and for Reynolds number of 300 there is weak agreement but it is consistent.

Comparison between the mean drag coefficients in different numerical and
experimental investigations including present work are presented in Table II. As it is
observed, the results for the drag coefficient are consistent with the results of other studies.

Finally, Figure 9 illustrates the corresponding vorticity field for Reynolds numbers
of 20, 40, 80, 100, 150, and 300. The symmetrical flow for Reynolds 20 and 40 can be
visualized in this figure. In these Reynolds numbers shear layers in both upper and lower
sides of cylinders have the greatest amount of vorticity. For Reynolds number 80 and
more than that, vortices shed from the cylinder. The intensity of the vortices is
dramatically decayed shortly after generation (see Figure 9(c)-(f)). These intensification
characteristics show that the vortices are continuously receiving energy from the shear
flow and losing energy by viscous dissipation. The shear flow at the back of the cylinder
is not well established and the vortices lose their energy very quickly by viscous
dissipation. Further downstream, the shear flow becomes intense and organized and the
vortices are able to receive more energy than they lose. Subsequently, the vortices enter a
region where the shear flow is not as intense and they start to lose more energy than they
receive. By increasing the Reynolds number (80-300), the vortices become stronger and
Von Karman Street vanishes more gradually.

Regarding the performed verification of the flow around a single cylinder in this section,
the present work has acceptable accuracy in the two-dimensional limits and in the absence
of three-dimensionality. In the next section the flow through tube bundles are investigated
and analyzed by adding more embedded cylinders in the computational domain.

5. Flow through tube bundles
We have verified the accuracy of the method of this paper for some typical flows. The
main objective of the current work however has been to simulate flows through tube
bundles. Tube bundles have complex geometry with many more cylinders than single
cylinder geometry. Arrangement of cylinders is important and affects behavior of the
flow through the tube bundle. Typical arrangements for heat exchangers are
considered in the present work in Re ¼ 100. Flow has no three-dimensionality effect
for Reynolds numbers below 1,000 (Kevlahan and Wadsley, 2005). Thus we can safely
use the present solver. Henceforth, the flow field in the tube bundle with in-line square
arrangement and 36 cylinders and then in general staggered arrangement with 61
cylinders are numerically simulated. The simulations have been also done for confined
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tube bundle cases where the flow domain is bounded by two lateral walls. The results
of these for configuration are summarized in Table III and analyzed as follows. Fluid
specification, time step, convergence criterion, and other situation are similarly set as
the flow around a single circular cylinder problem of the previous section. Note that
flows are impulsively started by imposing free-stream velocity.

5.1 Tube bundle in in-line square arrangement
5.1.1 Unconfined case. In this section, we presented the computed results of the flow
field through an unconfined tube bundle with in-line square arrangement. These
configurations are frequently used for cross-flow heat exchangers and static mixers.

Table II.
Comparison of the mean
drag coefficient obtained

by the present work
with some experimental

data and numerical
results

Reference Re CD Comments

Present work 10 2.73 Cartesian-staggered grid, Finite-volume method
20 2.00
40 1.52
80 1.31

100 1.29
150 1.27
300 1.21

Lima E. Silva et al. (2003) 10 2.81 Cartesian grid, Finite differences method, Immersed
boundary method20 2.04

40 1.54
80 1.40

100 1.39
150 1.37
300 1.27

Park et al. (1998) 10 2.78 (C-grid/domain) polar upstream and rectangular
downstream, Finite differences method20 2.01

40 1.51
80 1.35

100 1.33
300 1.37

Kravchenko et al. (1999) 40 1.52 Polar zonal grid, Finite difference method
100 1.31

Dennis and Chang (1970) 20 2.05 Polar grid, Finite difference method, Steady state
solution40 1.52

Ye et al. (1999) 20 2.03 Cartesian cell-centered collocated grid, Finite-Volume
method, Cut-cell technique40 1.52

80 1.37
300 1.38

Tseng and Ferziger (2003) 40 1.53 Cartesian cell-centered collocated grid, Finite-Volume
method, Ghost-cell technique100 1.42

Tritton (1959) 20 2.22 Experimental
40 1.48
80 1.29

100 1.25

Henderson (1995) 100 1.30 Experimental
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Figure 9.
Vorticity field of flow
around a circular cylinder

Table III.
The results obtained for
the flow through tube
bundles in Re ¼ 100

In-line square with
36 cylinders

General staggered with
61 cylinders

Tube bundle arrangement Unconfined Confined Unconfined Confined

Maximum drag coefficient 1.06 1.97 0.75 2.85
Average drag coefficient 0.118 0.214 0.065 0.327
Maximum lift coefficient 0.11 0 0.46 0.74
Average lift coefficient 0 0 0 0
Maximum gap velocity 1.74U 2.53U 1.87U 2.49U
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In addition of Table III, for analysis of the results, we have shown flow visualizations of
instantaneous vorticity fields, pressure contours, and streamlines.

In Figure 10, we sketch the flow configuration for bundles of tubes with in-line
arrangement and free-stream velocity of U. The geometry is characterized by the pitch-
to-diameter ratio P/D, where D denotes the tube diameter and P the bundle pitch. In
industrial applications, the ratio is typically between 1.3 and 2. Reynolds number is
defined based on the tube’s diameter and the free-stream velocity is equal to 100. In the
present simulations D ¼ 0:04 and P/D ¼ 2 are taken. The number of cylinders in the
tube bundle is 36 and all of them are stationary and inflexible and are imposed to
viscous, incompressible, and unsteady cross-flow. Mesh size is 360� 390 and finer in
the region of the tube bundle with 20 lying cells within every cylinder.

In Figures 11-13 we show snapshot of the vorticity field, pressure contours, and
streamlines, respectively, at tU/D ¼ 20, Re ¼ 100. General flow pattern in Figure 11, is
in good agreement with the results of Schneider and Farge (2005) simulation in
Re ¼ 200. The highest vorticity is seen on the cylinders of middle rows. Also, the flow
behind the tube bundle is rotational. Since there is no solid in regions far from tube
bundle, vorticity is equal to zero in those regions. The symmetric pattern of flow

Figure 10.
Schematic of flow through

a tube bundle with tube
pitch P, tube diameter D,

and pitch-to-diameter
ratio P/D

Figure 11.
Vorticity field computed

for tube bundle in in-line
square arrangement with
36 cylinders at tU/D ¼ 20,

Re ¼ 100, and P/D ¼ 2
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related to the centerline of the tube bundle is completely recognized. Figure 12 shows
that there is high pressure drop (especially after the first column) in the flow through
tube bundle. Low pressure districts behind the bundle are corresponding with the
formed vortices. In the entrance of the bundle, pressure is so high (stagnation points)

Figure 12.
Pressure contours
obtained for tube bundle
in in-line square
arrangement with 36
cylinders at tU/D ¼ 20,
Re ¼ 100, and P/D ¼ 2

Figure 13.
Streamlines computed for
tube bundle in in-line
square arrangement with
36 cylinders at tU/
D ¼ 20, Re ¼ 100, and
P/D ¼ 2
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therefore the drag is higher for cylinders in the first column related to the others.
Figure 13 shows formation of big vortices behind most cylinders of the bundle. The
considerable point is that the flow has introduced two different patterns; the pattern of
flow through the tube bundle and the pattern of flow around the tube bundle. Here,
flow through the tube bundle reached the steady state and has no change with time but
the flow around the tube bundle is unsteady and formed vortices behind that travel to
the downstream and construct an irregular vortex street.

As a conclusion, based on Figures 11-13, the flow is steady within this arrangement
of the tube bundle, but is unsteady behind that. Symmetric flow field for two middle
rows led to the zero lift for the cylinders of these rows. Mean value of lift coefficient for
all the cylinders of tube bundle is also zero.

As it is presented in Table III, computation of drag coefficients for cylinders shows
that maximum drag is 1.06 which belongs to two middle cylinders of the first column.
Upper and lower cylinders of these cylinders have a drag coefficient of 0.732. Finally,
drag coefficient of most upper and lower cylinders of the first column is 0.551. Drag
coefficient decays to 0.2 for second column and very insignificant for the next columns.

The last considerable point is the definition of maximum velocity in the tube bundle
called critical velocity. Critical velocity will be used in Connors criteria of tube bundles.
For the tube bundle with square or triangular arrangements, based on the analytical
approaches, critical velocity is higher than free-stream velocity with the ratio of
P=ðP � DÞ (Blevins, 1990). In this manner, critical velocity should be twice the free-
stream (2U) in the present simulation. While, numerical computation estimated the
critical velocity as 0.0043611 and in comparison to the free-stream velocity (0.002505)
the ratio will be equal to 1.74. In the meantime, no noticeable higher velocities were
observed out of the tube bundle.

5.1.2 Confined case. In this case, the tube bundle in in-line square arrangement
is confined by two lateral walls which make more similar configuration to the real
situation of the heat exchangers. The gaps between the walls and last rows of the tube
bundle are selected equal to the cylinders diameter. The simulation shows that the
values of the velocity components, vorticity, and drag coefficients have been increased
in comparison with the unconfined case. Maximum drag coefficient have been raised
from 1.06 and reached 1.97 while average drag coefficient of tube bundle remained zero
due to the symmetric flow pattern (Table III).

Critical velocity reached 2.53U and gap velocity between the walls and the last rows
of tube bundle is calculated as 2.89U. Amount of vorticity is reached 1.55 times related
to the confined case. Pressure contours and streamlines have had no considerable
change with the previous situation.

5.2 Tube bundle in general staggered arrangement
5.2.1 Unconfined case. In this section, unsteady and incompressible viscous flow
through an array in a general staggered arrangement is numerically simulated.
Figure 14 shows the sketch of tube bundle in the general staggered arrangement,
where L is the lateral spacing between adjacent cylinders and T is transverse spacing
between adjacent cylinders. The T/D and L/D ratios have been selected as 2 and 1,
respectively. 61 circular cylinders are embedded in the bundle. This configuration is
frequently used in heat exchangers, nuclear reactors and even porous media. Mesh size
and other specification of the simulation are similarly set as the situation of section 5.1.

Consequently, in Figures 15-17, we show snapshot of the vorticity field, pressure
contours, and streamlines, respectively, at tU/D ¼ 20 and Re ¼ 100. Flow through this
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arrangement is also steady like previous arrangement. The reason is the vicinity of
embedded cylinders and their little spacing that avoided vortex shedding behind every
cylinder. From Figure 15 is observed that there is no symmetry in axes of every
cylinder (except five cylinders on the centerline of the tube bundle), therefore lift forces
are produced, in contrary with the previous arrangement. But mean lift coefficient is
zero in the tube bundle due to the existence of general symmetry axes. Here, the flow
around the tube bundle implies the flow around bluff bodies by rectangular cross
sections. Two big vortices are symmetrically formed behind the tube bundle. Pressure
distribution (Figure 16) shows that the flow has not extremely penetrated into the tube
bundle. The reason is that the tube bundle were not confined by lateral walls, otherwise
the flow would have been forced to pass through the cylinders. And also the high
pressure regions are not limited to the first column of the bundle but the region is like a
triangle where first column is its base and its head is the center point of the bundle.
This led to the fact that drag coefficient was not significantly different in the first
column. Low pressure regions which are the place of two big vortices are recognized

Figure 15.
Vorticity field computed
for tube bundle in general
staggered arrangement
with 61 cylinders at tU/
D ¼ 20, Re ¼ 100, T/
D ¼ 2, and L/D ¼ 1

Figure 14.
Schematic of flow through
a tube bundle in general
staggered arrangement
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behind the bundle. The streamlines in Figure 17 exhibit extremely tortuous paths of
flows through the tubes. Also, there is no vortex behind the cylinders due to the low
spacing of them.

Computation of drag coefficients for cylinders shows that maximum drag is 0.751 which
belongs to the first cylinder from upper-left side and its opposite cylinder in lower-left side.
Drag coefficient in the second column which consists of staggered cylinders, is negligible
and mean drag coefficient in the third column is calculated as 0.209. Furthermore, drag
coefficients are negligible for the next columns. Therefore, supporting the first and the third
column in heat exchangers with general staggered tube bundle is more important.

Numerical computation estimated the critical velocity as 0.0046838. Regarding the
amount of free-stream velocity (0.002505) the ratio will be equal to 1.87, while there are

Figure 16.
Pressure contours

obtained for tube bundle
in general staggered

arrangement with 61
cylinders at tU/D ¼ 20,

Re ¼ 100, at T/D ¼ 2
and L/D ¼ 1

Figure 17.
Streamlines computed for

tube bundle in general
staggered arrangement

with 61 cylinders at tU/
D ¼ 20, Re ¼ 100, T/

D ¼ 2, and L/D ¼ 1
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higher velocities out of the tube bundle with the ratio of 1.96 related to the free-stream
velocity. On the other hands, this tubes arrangement guides the flow around the bundle
with higher velocity.

5.2.2 Confined case. In this case the values of the velocity components, vorticity, and
drag coefficients have been significantly raised. Maximum drag and lift coefficients are
increased from 0.75 to 2.75 and from 0.46 to 0.74, respectively (Table III). Clearly, drag
coefficient has had considerable growth.

Critical velocity reached 2.49U and gap velocity between the walls and the last rows
of tube bundle is calculated as 5.84U. Amount of vorticity is reached 3.07 times related
to the confined case of this configuration.

Streamlines pattern has completely changed and the big vortices are not appeared
stationary behind the bundle. Here, small vortices formed and travel to the down
stream of flow field.

6. Conclusion
A finite-volume based Cartesian-staggered grid method has been implemented which
allows us to simulate unsteady, viscous flows tube bundles. A simple procedure has
been implemented which allows the selection of ghost-cells for applying the no-slip
condition. No-slip condition has been enforced using a linear interpolation on the ghost-
cells’ preserves of the second order accuracy of the discretization. The grid was finer in
the region of the bluff bodies.

Cavity flow has been solved for calibration of the solver and verification of the
results in a case which no boundary are embedded in the domain. Then the simulations
of flow past a circular cylinder subjected to a uniform free-stream have also been
carried out in the Reynolds number range 10-300. Key quantities such as the mean
drag coefficient, vorticity field, and vortex shedding Strouhal number obtained from
our simulations agree well with the established experimental and numerical results. It
is concluded that in the absence of three-dimensionality, the solver has a reasonable
accuracy.

In order to analyze the flow through tube bundles, we have simulated two relatively
complex flows; the flow through in-line square and general staggered arrangements with
36 and 61 cylinders, respectively. Results were in good agreement with the literature and
show that the maximum drag is 1.06 which belongs to two middle cylinders of the first
column in square arrangement. While the maximum drag coefficient in the general
staggered arrangement is 0.751 which belongs to the first cylinder from up and left side
and its opposite cylinder in down and left side. Therefore, drag coefficient is highest in
the first column of these arrangements. For the cases where tube bundles are confined,
maximum drag coefficients reached 1.97 and 2.75, respectively.

Two different flow patterns have been observed in both arrangements; the pattern
through the bundles and the pattern around the bundles. Internal pattern is steady and
has no change with time. External pattern for square arrangement is unsteady with
irregular vortex shedding. While, external pattern of general staggered arrangement
consist twin fixed vortices formed behind the bundle.

The ratio of the critical velocity to the free-stream velocity for in-line square tube
bundle and general staggered tube bundle is equal to 1.74 and 1.87 which can be
directly used in the calculation of Connors criteria. Values of 2.53 and 2.49 are obtained
for confined cases, respectively.

Eventually, as a marginal conclusion, we find that the current method has no
difficulty in resolving the complex flow pattern through tube bundles. It can be a
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powerful tool to study fluid-structure interaction. The authors plan to simulate flows
at high Reynolds numbers in order to predict fluid-elastic instability in tube bundles
which will be presented in an individual article.
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